This is example demonstrates how to write a proof by contradiction in MathML.
<!doctype html> <html> <head> <title>XoaX.net's MathML: Contradiction Proof</title> </head> <body> <p>Prove that there are an infinite number of prime numbers.</p> <p>To begin, we assume that there are only a finite number of prime numbers, say <math><msub><mi>p</mi><mn>1</mn></msub><mo>,</mo> <msub><mi>p</mi><mn>2</mn></msub><mo>,</mo> <msub><mi>p</mi><mn>3</mn></msub><mo>,</mo> <mi>…</mi><mo>,</mo> <msub><mi>p</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>,</mo> <msub><mi>p</mi><mi>n</mi></msub></math>.</p> <p>Consider the number <math><mi>q</mi><mo>=</mo> <msub><mi>p</mi><mn>1</mn></msub><mo>×</mo> <msub><mi>p</mi><mn>2</mn></msub><mo>×</mo> <msub><mi>p</mi><mn>3</mn></msub><mo>×</mo> <mi>…</mi><mo>×</mo> <msub><mi>p</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>×</mo> <msub><mi>p</mi><mi>n</mi></msub><mo>+</mo><mn>1</mn></math> </math></p> <p>The number <math><mi>q</mi></math> is not divisible by any of the prime numbers <math><msub><mi>p</mi><mi>i</mi></msub></math>, since it leaves a remainder of 1 when it is divided by any of them. So, <math><mi>q</mi></math> must be divisible by some prime that is not in the list, by the Fundamental Theorem of Arithmetic. This is a contradiction to our assumption of having the complete list of prime numbers. Hence, there must be an infinite number of prime numbers.</p> </body> </html>
© 20072025 XoaX.net LLC. All rights reserved.