The JavaScript code example demonstrates how to find a zero of a function using a fixed-point algorithm.
<!DOCTYPE html> <html> <head> <title>XoaX.net's Javascript</title> <style> table { background-color:white; } </style> </head> <body> <script type="text/javascript" src="FindingAZeroWithAFixedPoint.js"></script> </body> </html>
FindZeroAtPi(); function FindZeroAtPi() { let dX0 = 0.0; let dX1 = 4.0; document.writeln('<table cellspacing="5" cellpadding="5" border="3">'); document.writeln('<thead><tr><th>X0</th><th>X1</th></tr></thead>'); while (Math.abs(dX0 - dX1) > 1.0e-15) { dX0 = dX1; dX1 = FixedPoint(dX1); document.writeln('<tr><td>'+dX0+'</td><td>'+dX1+'</td></tr>'); } document.writeln('</table>'); } // Given y = sin(x) // To find sin(x) = 0, add x to both sides to get x = sin(x) + x. // Now, Pi is a fixed point of y = sin(x) + x // Note that y'(pi) = 0 < 1. So, the algorithm converges ... rapidly. // Let x(n) = sin(x(n-1)) + x(n-1) function FixedPoint(dX) { return Math.sin(dX) + dX; }
© 20072025 XoaX.net LLC. All rights reserved.