The JavaScript code example demonstrates how to find a zero of a function using a fixed-point algorithm.
<!DOCTYPE html> <html> <head> <title>XoaX.net's Javascript</title> <style> table { background-color:white; } </style> </head> <body> <script type="text/javascript" src="FindingAZeroWithAFixedPoint2.js"></script> </body> </html>
FindZeroAtSqrt2(); function FindZeroAtSqrt2() { let dX0 = 0.0; let dX1 = 2.0; document.writeln('<table cellspacing="5" cellpadding="5" border="3">'); document.writeln('<thead><tr><th>X0</th><th>X1</th></tr></thead>'); while (Math.abs(dX0 - dX1) > 1.0e-5) { dX0 = dX1; dX1 = FixedPoint(dX1); document.writeln('<tr><td>'+dX0+'</td><td>'+dX1+'</td></tr>'); } document.writeln('</table>'); } // Given y = x^2-2 // To find y(x) = 0 or 0 = x^2-2, mulitplply by -.5 and add x to get x = 1 - .5x^2 + x. // Now, sqrt(2) is a fixed point of y = 1 - .5x^2 + x // Note that y'(sqrt(2)) = sqrt(2) - 1 < 1. So, the algorithm converges. // Let x(n) = 1 - .5*(x(n-1)^2) + x(n-1) function FixedPoint(dX) { return 1 - .5*dX*dX + dX; }
© 20072025 XoaX.net LLC. All rights reserved.