This JavaScript program demonstrates how to draw a solid colored cube with lighting WebGL program. This program shows how to specify a set of vertices and normal vectors with indices to specify the geometry.
<!DOCTYPE html>
<html>
<head>
<title>XoaX.net's WebGL</title>
<script id="idVertexShader" type="c">
attribute vec4 av4Vertex;
attribute vec4 av4Normal;
uniform mat4 um4MvpMatrix;
uniform vec3 uv3CubeColor;
uniform vec3 uv3LightColor;
uniform vec3 uv3LightDirection;
varying vec4 vv4Color;
void main() {
gl_Position = um4MvpMatrix*av4Vertex;
vec3 v3Normal = normalize(av4Normal.xyz);
float fIntensity = max(dot(uv3LightDirection, v3Normal), 0.0);
vec3 v3Diffuse = fIntensity*uv3LightColor*uv3CubeColor;
vv4Color = vec4(v3Diffuse, 1.0);
}
</script>
<script id="idFragmantShader" type="c">
precision mediump float;
varying vec4 vv4Color;
void main() {
gl_FragColor = vv4Color;
}
</script>
<script type="text/javascript">
function Render() {
// Get the WebGL Context
var qCanvas = document.querySelector("#idCanvasWebGL");
var qGL = qCanvas.getContext("webgl");
// Compile the vertex shader
var sVertexShaderCode = document.querySelector("#idVertexShader").text;
var qVertexShader = qGL.createShader(qGL.VERTEX_SHADER);
qGL.shaderSource(qVertexShader, sVertexShaderCode);
qGL.compileShader(qVertexShader);
// Compile the fragment shader
var sFragmentShaderCode = document.querySelector("#idFragmantShader").text;
var qFragmentShader = qGL.createShader(qGL.FRAGMENT_SHADER);
qGL.shaderSource(qFragmentShader, sFragmentShaderCode);
qGL.compileShader(qFragmentShader);
// Compile and link the program
var qProgram = qGL.createProgram();
qGL.attachShader(qProgram, qVertexShader);
qGL.attachShader(qProgram, qFragmentShader);
qGL.linkProgram(qProgram);
qGL.useProgram(qProgram);
// Get the storage locations of uniform variables and so on
var qMvpMatrix = qGL.getUniformLocation(qProgram, 'um4MvpMatrix');
var qCubeColor = qGL.getUniformLocation(qProgram, 'uv3CubeColor');
var qLightColor = qGL.getUniformLocation(qProgram, 'uv3LightColor');
var qLightDirection = qGL.getUniformLocation(qProgram, 'uv3LightDirection');
// Set the cube color to red and the light color to white
qGL.uniform3f(qCubeColor, 1.0, 0.0, 0.0);
qGL.uniform3f(qLightColor, 1.0, 1.0, 1.0);
// Set a directional light source, like the Sun
var faDirectionOfLight = new Float32Array([.5, 1.0, 2.0]);
Normalize(faDirectionOfLight);
qGL.uniform3fv(qLightDirection, faDirectionOfLight);
var faModelViewProj = CreatePerspectiveMatrix(15, qCanvas.width/qCanvas.height, 1, 10);
var faLookAt = CreateLookAtMatrix([4, 5, 6],[0, 0, 0],[0, 1, 0]);
MultiplyMatrices(faModelViewProj, faLookAt);
qGL.uniformMatrix4fv(qMvpMatrix, false, faModelViewProj);
qGL.clearColor(0.2, 0.2, 0.2, 1.0);
qGL.enable(qGL.DEPTH_TEST);
qGL.clear(qGL.COLOR_BUFFER_BIT | qGL.DEPTH_BUFFER_BIT);
// There are 6 sides with 2 triangles per side and 3 vertices per triangle: 6x2x3 = 36
var iVertexCount = CreateBuffers(qGL, qProgram);
qGL.drawElements(qGL.TRIANGLES, iVertexCount, qGL.UNSIGNED_BYTE, 0);
}
function Normalize(faV) {
var fL = Math.sqrt(faV[0]*faV[0] + faV[1]*faV[1] + faV[2]*faV[2]);
faV[0] /= fL; faV[1] /= fL; faV[2] /= fL;
}
function Dot(faV1, faV2) {
return (faV1[0]*faV2[0] + faV1[1]*faV2[1] + faV1[2]*faV2[2]);
}
function Cross(faV1, faV2) {
return [faV1[1]*faV2[2]-faV1[2]*faV2[1], faV1[2]*faV2[0]-faV1[0]*faV2[2], faV1[0]*faV2[1]-faV1[1]*faV2[0]];
}
function Difference(faV1, faV2) {
return [faV1[0]-faV2[0], faV1[1]-faV2[1], faV1[2]-faV2[2]];
}
function MultiplyMatrices(faaM, faaA) { // M = M*A, Note M != A
var faRow = [0,0,0,0];
for (iRow = 0; iRow < 4; ++iRow) {
// Copy the current row
for(iCol = 0; iCol < 4; ++iCol) {
faRow[iCol] = faaM[iRow + 4*iCol];
}
for(iCol = 0; iCol < 4; ++iCol) {
faaM[iRow + 4*iCol] = 0.0;
for (k = 0; k < 4; ++k) {
faaM[iRow + 4*iCol] += faRow[k]*faaA[4*iCol + k];
}
}
}
}
function CreatePerspectiveMatrix(fFieldOfViewDeg, fAspectRatio, fNearPlane, fFarPlane) {
var fFieldOfViewRad = Math.PI*fFieldOfViewDeg/180;
var fSin = Math.sin(fFieldOfViewRad);
var fCos = Math.cos(fFieldOfViewRad);
var fCot = fCos/fSin;
var fDepth = fFarPlane - fNearPlane;
var faMatrix = new Float32Array([
fCot/fAspectRatio, 0.0, 0.0, 0.0,
0.0, fCot, 0.0, 0.0,
0.0, 0.0, -(fFarPlane + fNearPlane)/fDepth, -1.0,
0.0, 0.0, -(2*fFarPlane*fNearPlane)/fDepth, 0.0]);
return faMatrix;
}
function CreateLookAtMatrix(faEye, faObject, faUp) {
var faViewDirection = Difference(faObject, faEye);
Normalize(faViewDirection);
var faRight = Cross(faViewDirection, faUp);
Normalize(faRight);
var faStraightUp = Cross(faRight, faViewDirection);
var faMatrix = new Float32Array([
faRight[0], faStraightUp[0], -faViewDirection[0], 0.0,
faRight[1], faStraightUp[1], -faViewDirection[1], 0.0,
faRight[2], faStraightUp[2], -faViewDirection[2], 0.0,
-Dot(faEye, faRight), -Dot(faEye, faStraightUp), Dot(faEye, faViewDirection), 1.0]);
return faMatrix;
}
function CreateBuffers(qGL, qProgram) {
// 6 sides, 4 vertices per side, 3 coordinates per vertex
var faVertices = new Float32Array(6*4*3);
var faNormalVectors = new Float32Array(6*4*3);
for (var iDim = 0; iDim < 3; ++iDim) {
// Loop over the front and back: xyz, xzy, yzx, yxz, zxy, zyx
for (var iFace = 0; iFace < 2; ++iFace) {
var iBaseFaceIndex = 12*(iDim + 3*iFace);
// Create the vertices
for (var iVertex = 0; iVertex < 4; ++iVertex) { // (1, 1), (-1, 1), (-1, -1), (1, -1), 00, 01, 10, 11
var iBaseIndex = iBaseFaceIndex + iVertex*3;
var bHighBit = (iVertex > 1);
var bLowBit = (iVertex == 1 || iVertex == 3);
if (iFace == 0) { // The iDim dimension is kept constant
faVertices[iBaseIndex + iDim] = 1.0;
faVertices[iBaseIndex + ((iDim + 1)%3)] = ((iVertex == 0 || iVertex == 3) ? 1.0 : -1.0);
faVertices[iBaseIndex + ((iDim + 2)%3)] = ((iVertex == 0 || iVertex == 1) ? 1.0 : -1.0);
} else {
faVertices[12*(iDim + 3*iFace) + iVertex*3 + iDim] = -1.0;
faVertices[iBaseIndex + ((iDim + 2)%3)] = ((iVertex == 0 || iVertex == 3) ? 1.0 : -1.0);
faVertices[iBaseIndex + ((iDim + 1)%3)] = ((iVertex == 0 || iVertex == 1) ? 1.0 : -1.0);
}
}
// Create the normals. They are constant over each face
for (var iVertex = 0; iVertex < 4; ++iVertex) {
var iBaseIndex = iBaseFaceIndex + iVertex*3;
faNormalVectors[iBaseIndex + iDim] = ((iFace == 0) ? 1.0 : -1.0);
faNormalVectors[iBaseIndex + ((iDim + 1)%3)] = 0.0;
faNormalVectors[iBaseIndex + ((iDim + 2)%3)] = 0.0;
}
}
}
// There are 6 sides, 2 triangles per side, 3 vertices per triangle
var ui8aIndices = new Uint8Array(6*2*3);
for (var iSide = 0; iSide < 6; ++iSide) {
var iBaseIndex = 6*iSide;
for (var iTriangle = 0; iTriangle < 2; ++iTriangle) {
// We index in terms of coordinate triples. So, our indices arer from 0 to 23
ui8aIndices[iBaseIndex + 3*iTriangle] = 4*iSide;
ui8aIndices[iBaseIndex + 1 + 3*iTriangle] = 4*iSide + 1 + iTriangle;
ui8aIndices[iBaseIndex + 2 + 3*iTriangle] = 4*iSide + 2 + iTriangle;
}
}
var aqBufferData = [
['av4Vertex', faVertices],
['av4Normal', faNormalVectors]
];
for (var qBufferData of aqBufferData) {
var qBuffer = qGL.createBuffer();
qGL.bindBuffer(qGL.ARRAY_BUFFER, qBuffer);
qGL.bufferData(qGL.ARRAY_BUFFER, qBufferData[1], qGL.STATIC_DRAW);
var qAttribute = qGL.getAttribLocation(qProgram, qBufferData[0]);
// There are 3 coordinates per point and 3 vertices per triangle
qGL.vertexAttribPointer(qAttribute, 3, qGL.FLOAT, false, 0, 0);
qGL.enableVertexAttribArray(qAttribute);
qGL.bindBuffer(qGL.ARRAY_BUFFER, null);
}
// Store the indices in the element buffer
var qIndexBuffer = qGL.createBuffer();
qGL.bindBuffer(qGL.ELEMENT_ARRAY_BUFFER, qIndexBuffer);
qGL.bufferData(qGL.ELEMENT_ARRAY_BUFFER, ui8aIndices, qGL.STATIC_DRAW);
return ui8aIndices.length;
}
</script>
</head>
<body onload="Render();">
<canvas id="idCanvasWebGL" width="400", height="400" style="border:1px solid red"></canvas>
</body>
</html>© 20072025 XoaX.net LLC. All rights reserved.